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Abstract

Even if it has been less than a decade and a half since Tian introduced his concept of evolution
lgebras to represent algebraically non-Mendelian rules in Genetics, their study is becoming
ncreasingly widespread mainly due to their applications to many scientific disciplines. In order
o facilitate further research on the topic, this paper deals with the past and present research on
hese kind of algebras, together with the most relevant topics regarding them.
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1. Introduction

Dealing with the chloroplast inheritance in plants, the German botanists and geneticists
arl Correns (1864–1933) [35,36] and Erwin Baur (1875–1933) [5] realized the relevance

hat non-Mendelian rules have in Genetics. In spite of this, and unlike Mendelian
enetics, for which an algebraic interpretation of its rules was already introduced in
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the 1930s by Serebrowski [105] and Kostitzin [70], it is not until the early 2000s that a
similar interpretation for non-Mendelian rules was proposed.

More specifically, in order to relate Markov chains with the prokaryotic cell repro-
uction, and based on the self-reproduction rules of non-Mendelian Genetics, evolution
lgebras were firstly introduced in the Ph.D. Thesis of Jianjun Paul Tian [108] in
004; then jointly presented with Petr Vojtechovsky [114] in 2006, and later analyzed
n greater depth in a book by Tian [109] in 2008. The dynamic nature of these non-
ssociative algebras is not described by a series of identities, unlike many other known
on-associative algebras such as alternative, Lie, Malcev or Jordan algebras, amongst
thers. More specifically, an evolution algebra E over a field K is a finite-dimensional

algebra such that there exists a natural basis {e1, . . . , en} so that ei · e j = 0, for all
, j ∈ {1, . . . , n} such that i ̸= j , and ei · ei =

∑
k pik ek , for all i ∈ {1, . . . , n}, and

some coefficients pik ∈ K, which are called the structural constants of the evolution
algebra E . This multiplication is extended linearly from the given multiplication of basis
elements. By considering each generator ei as an allele in Genetics, the structure matrix
(pi j )i, j encodes somehow the laws of inheritance of non-Mendelian Genetics as algebraic
properties of the algebra.

Even if a wide range of mathematicians has dealt with this type of algebras since
the original manuscripts of Tian and Vojtechovsky, the relevance of evolution algebras
is not still widely known. In order to make easier further research on the topic, this
paper gathers together the antecedents, origin, early stage and later development of this
kind of algebras, and shows different applications arising from them. In any case, we
recommend the recent manuscript of Utkir Rozikov [100] for some detailed descriptions
on genetic algebras, evolution algebras and quadratic stochastic operators, with particular
emphasis in the study of algebraic and probabilistic approaches in population dynamics.
See also [96] for a short survey on genetic and evolution algebras, and the expository
article written by Tian [111] in 2016.

The paper is organized as follows. Section 2 outlines the origin and development of
genetic algebras as primordial antecedents of Tian’s concept of evolution algebras. In
Section 3 some preliminary concepts and results on evolution algebras are indicated.
Next, in each subsection of Section 4, a brief comment on the main papers published on
this topic is given. Furthermore, Section 5 overviews the relationship among evolution al-
gebras, Graph theory, Group theory, Markov chains and Biology. The paper is completed
with an extensive bibliography, which may be of valuable help to all those researchers
interested in this topic. Throughout the paper, we follow the current notation, which may
differ from the original one to which we refer.

2. Antecedents

This section deals with the origin of genetic algebras as cornerstone of Tian’s
concept of evolution algebra. For more details about the historical background on genetic
algebras, we refer the reader to [11,76,99,100,121].

In 1866, Gregor Johann Mendel (1822–1884) was the first who made use of algebraic
symbols to express sexual reproduction laws of inheritance. It was done in his original
manuscript on experiments in plant hybridization [78]. More specifically, given a pair
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of plant characters A and a, together with the hybrid form Aa in which both characters
use together, Mendel indicated with an expression of the form αA+βAa+γ a the ratio
: β : γ of numbers of offsprings having each possible plant character A, Aa and a in

he following generation. In this way, Mendel introduced three principles:

• The principle of paired factors, which states that characters are controlled by unit
factors that appear in pairs within each individual organism.

• The principle of dominance, which states that one of the two previous factors is
dominant and makes its effect in the individual, whereas the other one is recessive
and does not show its effect unless both characters are recessive.

• The principle of segregation, which states that, during the inheritance process, the
mentioned pair of factors separate randomly so that the offspring receives exactly
one factor from each parent.

Almost forgotten for decades, Mendel’s laws were independently rediscovered around
900 by the Dutch botanist Hugo de Vries (1848–1935) [119], who introduced the
erm mutation and suggested that of gene; the German botanist and geneticist Carl

Correns (1864–1933) [35], who discovered the cell extranuclear inheritance; the Austrian
agronomist Erich von Tschermak (1871–1962) [117], who introduced the combination of
plant characters in order to improve the efficiency of plant breeding; and the American
agronomist William Jasper Spillman (1863–1931) [106], whose work was crucial for
the development of Agricultural Economics. The emergence of all their contributions
concerning the distribution of characters among offspring in plant hybridization made
fundamental the study and development of Mendel’s laws.

In 1905, the English biologist William Bateson (1861–1926) introduced the term
Genetics to describe the study of inheritance processes [4]. Bateson was a fervent
advocate of Mendel [3], whose principles, even being reborn, were questioned at that
time. An interesting question in this regard had been asked in 1902 by the British
statistician George Udny Yule (1871–1951), who contemplated [123] that dominant
factors could increase indefinitely in a continuous way throughout generations. One
year later, the English mathematician and biostatistician Karl Pearson (1857–1936) [95]
and the American zoologist and geneticist William Ernest Castle (1867–1962) [31]
established that, under random circumstances, there exists certain stability of characters in
the inheritance process. Concerning such a stability, the English mathematician Godfrey
Harold Hardy (1877–1947) [55] asked in 1908 about the circumstances under which the
distribution of characters in the offspring is the same that in the generation before in the
absence of disturbing factors.

The answer was independently given at that moment by Hardy himself and the German
physician Wilhelm Weinberg (1862–1937) [120], and is currently known as the Hardy–
Weinberg law. An important limitation of that law is the assumption of a potentially
infinite population, not taking into account the importance of sampling fluctuations in
evolutionary processes described by finite populations. The first proposal dealing with
such a possibility would be the so-called Wright–Fisher model based on the original
manuscripts of the American geneticist Sewall Green Wright (1889–1988) [122] and the
British statistician and geneticist Ronald Aylmer Fisher (1890–1962) [47].
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In 1923–24, the Soviet mathematician Sergei Natanovich Bernstein (1880–1968)
9,10] introduced the concept of quadratic stochastic operator (QSO) as a map V : S →

S, where

S := {(x1, . . . , xn) ∈ Rn
: xi > 0, for all i, and

∑
i

xi = 1},

and, for each (x1, . . . , xn) ∈ S, it is V ((x1, . . . , xn)) = (V (x1), . . . , V (xn)), where

V (xk) :=

∑
i, j

pk
i j xi x j , for all k ∈ {1, . . . , n}.

ere, the product xi x j is the usual product of real numbers. In addition, pk
i j ≥ 0 and

pk
i j = pk

ji , for all i, j, k ∈ {1, . . . , n}, and
∑

k pk
i j = 1, for all i, j ∈ {1, . . . , n}. As

uch, every QSO constitutes an evolutionary operator that describes the time evolution
r inheritance process of a free population with n different genetic types.

More specifically, each component xi of a given element x = (x1, . . . , xn) ∈ S
epresents the probability that a random individual in the population under consideration
elongs to the species that is determined by the i th genetic type. Hence, the n-tuple x

describes the distribution of the population with respect to the n genetic types, whereas
V (x) describes such a distribution for the next generation. In particular, each value
pk

i j = pk
ji determines the probability that an offspring with genetic type k arises from

two individuals of respective genetic types i and j , without sexual differentiation.
Based on the possible fluctuation of genetic types throughout subsequent generations

f an evolutionary process, a main problem in the theory of QSOs consists of determining
heir limit behavior for any given initial distribution of genetic types x ∈ S. That is, the
tudy of the corresponding distribution V m(x) for the m th generation, when m tends to

infinity. In this regard, Berstein focused in particular on the problem of determining and
classifying all those QSOs for which a stationary distribution or stable evolution arises
in only one generation (that is, such that V 2

= V ). Even if Berstein only solved this
problem for n = 3, it is currently solved for all dimensions (see [52,54]). To this end, it
would be crucial the work in 1975 of Philip Holgate (1934–1993) [60], who expressed
algebraically this problem as follows.

1. Firstly, Holgate related each given evolutionary operator V with the algebra
described as

xy =
1
2

(V (x + y) − V (x) − V (y)) .

(It was called evolution algebra by Joseph Bayara [6,7], which differs from the
concept introduced by Tian, the one that is commonly used in the current literature
and with which this paper deals.)

2. Then, he introduced the concept of Bernstein algebra as an algebra A such that
x2 x2

= ω2(x) x2, for all x ∈ A, where ω is an algebra homomorphism from A
into its base field, which is called the weight of the algebra. Recall that an algebra
for which one such a non-trivial homomorphism exists is called baric [42].

In 1934, Alexander Pawlowitsch Serebrowski (1884–1938) [105] was the first to give
an algebraic interpretation of the symbol × as a mathematical way to represent Mendelian
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inheritance laws. A similar symbolic multiplication was independently introduced shortly
after by Aleksandrovich Kostitzin (1883–1963) [70].

At the same period, Valery Ivanovich Glivenkov (1896–1940) [49] introduced the so-
called Mendelian algebras for diploid species. Nevertheless, it was Ivor Malcolm Haddon
Etherington (1908–1994) who, in 1939, introduced in Genetics [42] the systematic study
of commutative non-associative linear algebras, by describing in particular the following
three types of algebras:

• A gametic algebra is a finite-dimensional algebra of basis {e1, . . . , en} such that
ei · e j =

∑
k pk

i j ek , where each structural constant pk
i j belongs to the real interval

[0, 1] so that
∑

k pk
i j = 1, for all i, j ∈ {1, . . . , n}. As such, each value pk

i j
represents the probability that an arbitrary gamete of zygotic type ek derives from an
individual of zygotic type ei e j . As occurs with the QSOs, the probability or progeny
distribution describes the evolution of the population under consideration. The latter
constitutes a free population if the inheritance process derives from random matings;
that is, with absence of sexual differentiation and selection.

• A zygotic algebra is the duplicate of a gametic algebra. That is, the former is
isomorphic to the set of quadratic forms of the latter.

• A copular algebra is the duplicate of a zygotic algebra.

ach one of the three just described algebras are baric by means of the weight ω that is
inearly defined from ω(ei ) = 1, for all i ∈ {1, . . . , n}. Here, {e1, . . . , en} is the basis of
he algebra under consideration, and hence,

ω(ei )ω(e j ) = 1 =

∑
k

pk
i j =

∑
k

pk
i jω(ek) = ω

(∑
k

pk
i j ek

)
= ω(ei e j ),

or all i, j . Further, Etherington called train algebra any baric algebra A with weight ω

uch that the equation of lowest degree relating the principal powers of any vector x ∈ A
as the form

xm
+ c1 ω(x) xm−1

+ · · · + cm ω(x)m
= 0.

inally, he termed special train algebra any baric algebra A with weight ω such that
N = ker(ω) is nilpotent (that is, there exists a positive integer m ∈ N such that N m

= 0)
nd all the principal powers N i , with i ∈ N, are ideals of A. In particular, every special
rain algebra is a train algebra.

Etherington called genetic algebra any one of the family of gametic, zygotic and
opular algebras and ensured that “all the fundamental genetic algebras are special train
lgebras”. Shortly after, he indicated [43] that this statement is only valid for gametic
lgebras, but not even for zygotic algebras, because the duplicate of a special train
lgebra, although a train algebra, is not always a special train algebra. This fact provided
erious problems for translating some properties and relations from genetic inheritance
rocesses.

In order to avoid the flaws in Etherington’s genetic algebras and give rise to a trans-
arent structure theory for them, Richard Donald Schafer (1918–2014) [104] provided
n 1949 an alternative formal definition that is intermediate between the concepts of

rain algebra and special train algebra. To this end, he made use of the transformation
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algebra T (A) of a non-associative algebra A. It is the algebra of all the polynomials with
coefficients in the base field, whose variables are transformations in the set formed by
the identity map in A, all the right multiplications Rα : A ↦→ A such that Rα(x) = x α,
and all the left multiplications Lα : A ↦→ A such that Lα(x) = α x , for all α, x ∈ A. In

articular, the transformation algebra of a baric algebra is baric.
Further, unlike Etherington, Schafer assumed the commutativity that is inherent in

ny inheritance process and hence, he considered Rα = Lα , for all α ∈ A. Then, he
called genetic algebra any commutative baric algebra A such that all the coefficients of
he characteristic function |λI − T |, with T ∈ T (A), only depend on the weight of the

algebra. As such, every genetic algebra is a train algebra and every special train algebra
is a genetic algebra. Moreover, unlike special train algebras, the duplicate of a genetic
algebra is always a genetic algebra.

In 1971, Harry Gonshör [50] proved that the concept of genetic algebra proposed by
Schafer is equivalent to have a commutative algebra A of basis {e0, e1, . . . , en} such
that ei e j =

∑
k ck

i j ek , for all i, j ∈ {0, . . . , n}, where c0
00 = 1; ck

0 j = 0, for all
k < j ; and ck

i j = 0, for all i, j > 0 and k ≤ max {i, j}. This new definition was
proved to have significant relevance in Genetics thanks to the genetic meaning that
Holgate [59,61] gave of duplicates and derivations of a genetic algebra. The study of
the subspace Der(A) of derivations of a genetic algebra A has also been dealt with by
Gonshör [51] himself and also by Roberto Costa [37,38], Aribano Micali and Philippe
Revoy [79], and, much more recently, by Rasul Ganikhodzhaev, Farrukh Mukhamedov,
Abror Pirnapasov and Izzat Qaralleh [48]. Recall in this regard that D ∈ Der(A) if and
only if D(xy) = D(x)y + x D(y), for all x, y ∈ A. As for any algebra, such a subspace
constitutes a Lie algebra.

Holgate also introduced [58] both notions of sex differentiation algebra and dibaric
algebra. The former characterizes the equal division of offspring between both sexes.
More specifically, the sex differentiation algebra is a bi-dimensional commutative algebra
of basis {m, w} such that m2

= w2
= 0 and mw = wm = (m + w)/2. Further, an

algebra is called dibaric if it admits a homomorphism onto the sex differentiation algebra.
Holgate proved in particular that, if A is a dibaric algebra, then its derived algebra A2

is a baric algebra. With the introduction of dibaric algebras, he formalized the original
idea of Etherington [42] of treating in a separate way male and female components of
the population.

Another contribution of Holgate [57] in the theory of genetic algebras was the use of
isotopisms of algebras in order to represent algebraically the mutation of genotypes in the
inheritance process. Recall in this regard that two n-dimensional algebras A and A′ are
aid to be isotopic [1] if there exist three non-singular linear transformations f , g and h
rom A to A′ such that f (u)g(v) = h(uv), for all u, v ∈ A. The triple ( f, g, h) is called
n isotopism (an isomorphism, if f = g = h; and an homomorphism, if besides, the
ondition of non-singularity is not imposed) between the algebras A and A′ (see [46] for
recent survey on the theory of isotopisms). Together with Tania Campos [25], Holgate

roved that certain types of zygotic algebras representing chromosome segregation and
ecombination are isotopic.

Much more recently, Manuel Ladra, Bakhrom Omirov and Rozikov [72] would

ntroduce the concept of bq-homomorphism as a pair of linear maps f and g from the
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algebra to the set of real numbers, so that f (uv) = g(uv) = ( f (u)g(v) + f (v)g(u))/2,
or all u, v ∈ A. (It constitutes an homomorphism whenever f = g.) Then, they
roved [72, Theorem 3.7] that an algebra is dibaric if and only if it admits a non-zero
q-homomorphism.

. Preliminaries on evolution algebras

In order to make this article as self-contained as possible and facilitate a better
nderstanding for the reader, we recall in this section some notions and basic results
n evolution algebras that were introduced in the original manuscripts of Tian and
ojtechovsky [109,114]. To this end, and from now on, let E denote an n-dimensional
volution algebra over a base field K, with natural basis {e1, . . . , en} and structural
onstants pik ∈ K, for all i, k ∈ {1, . . . , n}.

If the base field K is the real field, then the evolution algebra is said to be real. In
uch a case, it is said to be non-negative if pik ≥ 0, for all i, k ∈ {1, . . . , n}. If, besides,

k pik = 1, for all i , then the real and non-negative evolution algebra is called Markov
volution algebra.

Every evolution algebra E is non-associative, commutative, flexible (that is, x(yx) =

xy)x , for x, y ∈ E); not necessarily power-associative (that is, the subalgebra generated
y a single element cannot be associative); and preserved by direct sums. Moreover,
volution algebras are not closed under subalgebras. So, a subalgebra of E is called an
volution subalgebra if the former is spanned by a subset of generators of the latter.
s such, it is an ideal of E . The latter is indecomposable if it is not the direct sum
f two nonzero ideals; connected if it is not the direct sum of two proper evolution
ubalgebras; irreducible if it has no proper subalgebra; and simple if it has no proper
volution subalgebra. Tian proved [109, Theorem 9] that any finite-dimensional evolution
lgebra has a simple evolution subalgebra.

Every evolution algebra E is uniquely determined by its evolution operator L : E ↦→

E , which is linearly described from

L(ei ) := ei ei =

∑
i

pikek, for all i ∈ {1, . . . , n}.

hen, for each positive integer m > 2, it is defined the plenary power

e[m]
i := L

(
e[m−1]

i

)
,

here e[0]
i := ei . The operator L may be considered as time-step in a discrete-time

ynamical system, and hence, it describes the dynamical flow of the evolutionary process
epresented by the evolution algebra E . In this regard, a generator ei of the evolution
lgebra E is called algebraically persistent if the evolution subalgebra generated by ei

s a simple evolution subalgebra. As such, it represents an absorbent state giving rise
o a stable evolution. Otherwise, it is said to be algebraically transient, which gives
ise to a transitory evolution. The latter would eventually derive an absorbent state,
ut only after certain generations. Any generator of a simple evolution subalgebra is
lgebraically persistent. In particular, every finite-dimensional evolution algebra contains

n algebraically persistent generator.
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A connected evolution algebra is simple if and only if all its generators are alge-

raically persistent. Tian proved [109, Theorem 11] that, if E is a connected finite-
dimensional evolution algebra, then

E =

n0⨁
j=1

E0, j + B0,

where
⨁

and + denote, respectively, direct sums of either subalgebras or linear
subspaces; each E0, j is a simple evolution subalgebra so that E0, j ∩E0, j ′ = {0}, whenever
j ̸= j ′; and B0 is a linear subspace spanned by algebraically transient generators, which
is called transient space. Even if B0 is not an evolution subalgebra in general, it may be
endowed of evolution structure from E once the multiplication is restricted within B0.
The previous decomposition process can inductively be repeated until no transient space
arises. That is, there exist an integer m > 0 and a subset {n1, . . . , nm} ⊂ N such that

E =

m∑
i=0

ni⨁
j=1

Ei, j ,

where
∑

denote direct sum of linear subspaces and each Ei, j is a simple evolution
algebra so that Ei, j ∩ Ei, j ′ = {0}, whenever j ̸= j ′. Each subset {Ei,1, . . . , Ei,ni }

constitutes the i th level of a hierarchical structure describing the dynamical flow of E ,
which enabled Tian [111] to ensure that “simple evolution algebras are the basic blocks
for building general evolution algebras”. Tian dealt in particular with the spectrum of the
evolution operator L at the 0th level of this hierarchy, and set out the following problem.

Problem 3.1 ([109]). Study the spectrum of the evolution operator of an evolution algebra
at the i th level of the hierarchical structure of the latter, for each i > 1. Furthermore, study
the spectrum theory concerning plenary powers of evolution algebras.

Furthermore, the just described hierarchical structure may also be used to classify
evolution algebras. More specifically, evolution algebras can be distributed according
to the number of levels of its related hierarchical structure and the number of simple
evolution subalgebras at each level. Every evolution algebra is homomorphic to a unique
evolution algebra, which is called its skeleton-shape, whose hierarchy has only one-
dimensional evolution algebras in all its levels [109, Theorem 15]. In particular, evolution
algebras within each class of the mentioned distribution are uniquely determined up to
their skeleton-shape homomorphism.

Another method for classifying evolution algebras is based on the period of their
generators. In this regard, a generator ei is said to occur in x =

∑n
i=1 αi ei ∈ E if

αi ̸= 0. It is denoted ei ≺ x . The period of a generator ei is defined as

di := g.c.d.
{

log2 m : ei ≺ e[m]
i

}
.

If
{

log2 m : ei ≺ e[m]
i

}
= ∅, then di = ∞. Further, if di = 1, then the generator ei is

called aperiodic. Otherwise, it is called periodic. If the evolution algebra is non-negative
simple, then all its generators have the same period [109, Theorem 7]. As such, non-
negative simple evolution algebras may be classified as either periodic or aperiodic. In the
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first case, if d > 1 is the period of all the generators of a non-negative simple evolution
algebra E , then these generators can be partitioned into d disjoint classes C0, . . . , Cd−1

such that, if ∆i denotes the linear subspace spanned by Ci , for all i ∈ {0, . . . , d − 1},
hen L(∆i ) ⊆ ∆i+1 mod d , and

E =

d−1⨁
i=0

∆i .

Based on the already mentioned fact that simple evolution algebras may be seen as
he basic blocks on the hierarchical structure of any evolution algebra, Tian proposed to
eneralize the previous results on non-negative simple evolution algebras. In particular,
e set out the following problem.

roblem 3.2 ([111]). Delve into the general study of simple evolution algebras, and
ot only non-negative ones. Characterize them and prove the existence of transitive
ccurrence relations. To this end, study in particular simple evolution algebras over finite
elds. Furthermore, it is also required to delve into the study of simple evolution algebras
t higher levels of the hierarchy of evolution algebras, and not only at the 0th level.

. Developing the theory of evolution algebras

This section deals with some of the most important results concerning the mathemat-
cal fundamentals of the theory of evolution algebras. Again, let E denote from now on

an n-dimensional evolution algebra over a base field K, with natural basis {e1, . . . , en}

and structural constants pik ∈ K, for all i, k ∈ {1, . . . , n}.

4.1. Nilpotent evolution algebras

In 2013, based on the non-necessary associativity of evolution algebras, José Manuel
asas, Ladra, Omirov and Rozikov [28] distinguished among nil evolution algebras, right
ilpotent evolution algebras and nilpotent evolution algebras. More specifically, for each
ector x ∈ E and each positive integer i > 1, let x ⟨i⟩

:= x ⟨i−1⟩x , where x ⟨1⟩
:= x . Then,

he vector x is nil if there exists a positive integer n such that x ⟨n⟩
= 0. The evolution

lgebra E is nil if all its elements are nil. Its nilindex is the minimum positive integer n
uch that x ⟨n⟩

= 0, for all x ∈ E . Further, the evolution algebra E is right nilpotent if
E ⟨n⟩

= 0, for some positive integer n, where E ⟨1⟩
:= E and E ⟨k+1⟩

:= E ⟨k⟩ E , for every
ositive integer k > 1. Finally, the evolution algebra E is nilpotent if En

= 0, for some
positive integer n, where E1

:= E and Ek
:=
∑k−1

i=1 E i Ek−i , for every positive integer
k > 1. The index of (right) nilpotency is defined similarly to the nilindex.

This distinction is not necessary in case of dealing with finite-dimensional complex
evolution algebras. The mentioned authors proved [28, Theorem 3.1] the equivalence of
right nilpotency and nility for finite-dimensional evolution algebras. Their equivalence
with nilpotency was shortly after proved by Luisa Marı́a Camacho, José Ramón Gómez,
Omirov and Rustam Turdibaev [23, Corollary 4.6] in case of dealing with finite-
dimensional complex evolution algebras. Their structure matrices are all of them upper
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triangular after a suitable permutation of their corresponding natural bases (see also
[29, Theorem 2.7]). In any case, it was observed that the nilindex and the indexes of
(right) nilpotency of one such an evolution algebra do not coincide in general. Further, it
was proved [23, Theorem 4.5] that the maximum index of nilpotency of an n-dimensional
evolution algebra is 2n−1

+ 1. A characterization of evolution algebras reaching this
maximum value was described in [28, Theorem 3.6]. More specifically, the index of
nilpotency of our evolution algebra E is 2n−1

+ 1 if and only if p12 p23 . . . p(n−1)n ̸= 0.
he automorphism group and local derivation of these evolution algebras with maximum

ndex of nilpotency were studied by Mukhamedov, Otabek Khakimov, Omirov and
aralleh [80]. Their distribution into isomorphism classes over the complex field was

stablished in [81]. Evolution algebras of index of nilpotency 2n−2
+ 1 were similarly

tudied by Qaralleh [97].
Also in 2013, Ahmed Sadeq Hegazi and Hani Abdelwahab [56] classified nilpotent

volution algebras of dimension up to three over any base field, and of dimension four for
lgebraically closed fields of any characteristic and also over the real field. To this end,
hey studied the annihilator extensions of evolution algebras. Recall that the annihilator
f an algebra A is the set

Ann(A) = {x ∈ A : xy = 0, for all y ∈ A}.

ccording to Alberto Elduque and Alicia Labra [39, Lemma 2.7], the annihilator of the
volution algebra E is Ann(E) = ⟨ ei ∈ A : e2

i = 0 ⟩.
In 2014, Tian and Yi Zou [116] characterized nil evolution algebras and nilpotent

evolution algebras in terms of their structural constants. In addition, they constructed
finitely generated nil evolution algebras that are not nilpotent and explained how their
results may be used to model certain population dynamics. They also studied finite-
dimensional complex evolution algebras [23], for which they characterized those nilpotent
evolution algebras that are isomorphic to evolution algebras in Jordan normal form. In
2015, Abror Khudoyberdiyev, Omirov and Qaralleh [69] reduced this study to idempotent
and absolute nilpotent elements, whose dynamic in chains of two-dimensional evolution
algebras depending on the time was dealt with by Sherzod Murodov [83].

In 2016, Elduque and Labra [40] distributed into isomorphism classes the four-
and five-dimensional indecomposable nilpotent evolution algebras over algebraically
closed fields of characteristic different from two. One year later, Abdelwahab Al-
sarayreh, Qaralleh and Muhammad Ahmad characterized [2] the space of derivations of
three-dimensional nilpotent evolution algebras. In 2018, Camacho, Khudoyberdiyev and
Omirov [24] distributed into isomorphism classes those nilpotent evolution algebras for
which any subalgebra is an evolution subalgebra. Shortly after, Omirov, Rozikov and
Marı́a Victoria Velasco [89] distributed into isomorphism classes the set of nilpotent
evolution algebras of dimension n ≤ 5.

4.2. Power-associative evolution algebras

Evolution algebras are not necessarily power-associative. Yolanda Cabrera, Mercedes
Siles and Velasco [27] observed that the evolution algebra E is power-associative only if
p2

= p , for all i . Thus, every nil evolution algebra is power-associative [29, Proof of
i i i i
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Theorem 2.2]. Examples of nil associative evolution algebras, which are therefore power-
associative, are shown in [40]. Further, Luisa Marı́a Camacho, José Ramón Gómez,

mirov and Rustam Turdibaev described [23, Example 4.8] a four-dimensional evolution
lgebra that is power-associative, but it is not associative.

In 2020, Moussa Ouattara and Souleymane Savadogo proved [91, Theorem 6] that
n evolution algebra is power-associative if and only if it is a Jordan algebra. They
lso determined all the power-associative evolution algebras up to dimension six. The
ame authors also dealt [90] with the distribution into isomorphism classes of those
ndecomposable and not power-associative evolution nil-algebras up to dimension five,
aving nil-index four.

.3. Baric evolution algebras

Unlike genetic algebras, evolution algebras are not baric in general. In this regard,
asas, Ladra and Rozikov proved [30, Theorem 3.2] that an n-dimensional real evolution
lgebra is baric if and only if there exists a positive integer k ≤ n such that ekek =

pkkek ̸= 0. Its weight ω is defined so that ω
(∑

i ai ei
)

= pkkai . Much more recently,
uattara and Savadogo [90, Theorem 3.3] have shown that this result can be extended

o any commutative field of characteristic distinct from two. Then, they have also
roved [90, Corollary 3.4] that every baric evolution algebra E over a base field K admits
natural basis {e1, . . . , en} and a weight ω : E → K such that ω(e1) = 1 and ω(ei ) = 0,

for all i > 1. Moreover, E = Ke1 ⊕ ker(ω), with e1ker(ω) = 0.
In this last work, it was also proved the non-existence of evolution train algebras of

rank two [90, Proposition 3.7] and the fact that a baric evolution algebra of weight ω is
a train algebra of rank r + 1 > 2 if and only if ker(ω) is nil of nil-index r [90, Theorem

.8]. Moreover, any evolution train algebra is a special train algebra [90, Theorem 3.12].
Casas, Ladra, Omirov and Rozikov proved [28, Theorem 4.1] that finite-dimensional

ilpotent evolution algebras are not dibaric. They also proved [28, Corollary 4.5] that
n evolution algebra is not dibaric when the determinant of its structure matrix is not
ero. Finally, they characterized [28, Proposition 4.10] the two-dimensional real dibaric
volution algebras.

In 2021, André Conseibo, Savadogo and Ouattara [34] have characterized baric
volution algebras that are Bernstein algebras and have classified into isomorphism
lasses these type of algebras, for dimension n ≤ 4.

4.4. (Semi)simple evolution algebras

In 2016, Cabrera, Siles and Velasco established [27, Corollary 4.6] that a finite-
dimensional evolution algebra is simple if and only if its structure matrix associated to
a given natural basis is nonsingular and that basis cannot be reordered so that, for some
m < n, the structure matrix has block form(

Wm×m Um×(n−m)
0(n−m)×m Y(n−m)×(n−m)

)
.

In 2019, Velasco [118, Corollary 3.7] characterized the maximal modular ideals of
an evolution algebra and proved [118, Corollary 3.8] that all of them have codimension
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one. Recall in this regard that a modular ideal of the evolution algebra E is any ideal
M of the algebra that is endowed with a modular unit u ∈ E such that x − xu ∈ M , for
all x ∈ E . In particular, Velasco [118, Proposition 2.2] proved that a finite-dimensional
evolution algebra has a unit (and hence, all its ideals are modular) if and only if its
structure matrix associated to a given natural basis is diagonal with non-zero entries.

The intersection of all the maximal modular ideals of the algebra constitutes its
Jacobson radical. Then, an evolution algebra is called semisimple if its Jacobson radical
is zero. Velasco dealt with semisimple evolution algebras by introducing the so-called
spectrum and m-spectrum of an evolution algebra. Both concepts were described in terms
of the eigenvalues of a suitable matrix related to the structure matrix of the algebra.
She set that the algebra is m-semisimple (respectively, spectrally semisimple) if the zero
ideal is the only one for which the m-spectrum is {0} (respectively, the spectrum is
0}). Unlike the associative case (where semisimplicity, spectrally semisimplicity and
-semisimplicity are equivalent), there exist m-semisimple evolution algebras whose

Jacobson radical coincides with the algebra.

4.5. Perfect evolution algebras

An algebra A is perfect if A2
= A. From [39, Theorem 4.4], every perfect evolution

lgebra has a unique natural basis. (Nadia Boudi, Cabrera and Siles found [12, Corollary
.7] a condition for an evolution algebra to have a unique natural basis.) Moreover,
he automorphism group of a finite-dimensional perfect evolution algebra is finite
39, Theorem 4.8].

In 2019, Cabrera, Müge Kanuni and Siles [17] introduced the basic ideal of an
evolution algebra as an ideal having a natural basis that can be extended to a natural
basis of the whole algebra. They established that maximal basic ideals are unique
except for those ideals having codimension one. This fact enabled them to ensure
[17, Proposition 2.19] that the number of zeros in the structure matrix of an evolution
algebra is an invariant, except for those cases in which there exists a maximal basic ideal
of codimension one.

It is so that the authors showed how maximal basic ideals play a fundamental role
in the distribution into isomorphism classes of four-dimensional perfect non-simple
evolution algebras. They dealt with this classification over a field with mild restrictions.
The complete distribution into isomorphism classes was later studied in [8].

That one of two dimensional perfect evolution algebras over arbitrary fields has
recently been established in [26], where it was also studied the automorphism group, the
space of derivations and identities of degree at most four of both perfect and non-perfect
evolution algebras.

In 2020, Boudi, Cabrera and Siles proved [12, Proposition 4.2] that every nonzero
ideal in a perfect evolution algebra is basic. In addition, they observed [12, Corollary
3.8] that a perfect evolution algebra has a nilpotent element of order three only if its
structure matrix associated to a given natural basis has a vanishing principal minor. The
reciprocal also holds when every element of the base field is a square.

In 2021, Elduque and Labra [41, Theorem 4.1] have characterized the space of
derivations of any perfect evolution algebra. Particularly, they have proved that, if the
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characteristic of the base field is zero or two, then this subspace is only formed by the
null map. Otherwise, its dimension depends on the number of connected components of
a related graph.

4.6. Derivation of evolution algebras

In the previous subsections, we have already mentioned some works concerning the
study of the space of derivations of different types of evolution algebras. Let us recall
here that a derivation of the evolution algebra E is any linear map d : E → E such that

(xy) = d(x)y + xd(y), for all x, y ∈ E .
As for any algebra, the space of derivations of a given algebra is a Lie algebra

hat constitutes a good approximation to its automorphism group and hence, to its
lgebraic structure. The system of equations described by this space was given by Tian
imself [109]. More specifically, if d is a derivation of the evolution algebra E that is
escribed so that d(ei ) =

∑
k dikek , with dik ∈ K, for all i , then it must be

pikd j i + p jkdi j = 0, for all i, j, k such that i ̸= j,

nd ∑
k

pikdk j = 2pi j di i , for all i, j.

In 2013, Camacho, Gómez, Omirov and Turdibaev [22] studied formally the space of
erivations of n-dimensional complex evolution algebras depending on the rank of certain
atrices. In particular, they proved that such a subspace is zero for evolution algebras

aving a non-singular structure matrix [22, Theorem 2.1]. They also described the space
f derivations of those n-dimensional evolution algebras having a structure matrix of rank
− 1.
Much more recently, Paula Cadavid, Mary Luz Rodiño and Pablo M. Rodrı́guez [19]

escribed the space of derivations of those evolution algebras that are uniquely associated
ith finite simple and connected graphs of order n ≥ 3 according to Tian’s proposal (see
ection 5.1). It was observed that each one of these spaces of derivations depends on

he twin partition of the set of vertices of the corresponding graph. (Recall here that two
ertices within a graph are called twins if their neighborhoods coincide.) In particular, if
very part in this twin partition contains at most two vertices, then the space of derivations
s only formed by the null map [19, Theorem 2.3]. The space of derivations in case
f existing some part within this twin partition with at least three vertices was also
haracterized [19, Theorem 2.6]. It is remarkable the fact that the authors dealt with
xamples of finite-dimensional evolution algebras having structure matrices of any rank.

The same authors, together with Cabrera, have recently explored [15] a similar
xtended approach by considering to this end the non-zero entries of the structure matrix
f the evolution algebra under consideration and its associated directed graph, which had
reviously been described by Cabrera, Siles and Velasco [27]. By making use of this
pproach, the authors have characterized the derivations of non-degenerate irreducible
hree-dimensional evolution algebras.

Let us finish this subsection with a proposal of further work on the topic under

onsideration. Similarly to the relationship between the subset of derivations of an algebra
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and its automorphism group, there also exists a relationship between its autotopism group
(that is, the group of isotopisms preserving the algebra A under consideration) and its
subset of ternary derivations. This terminology was introduced for general algebras by
Clara Jiménez-Gestal and José Marı́a Pérez-Izquierdo [68]. More specifically, a ternary
derivation of an algebra A is any triple (d1, d2, d3) of endomorphisms of the algebra such
that

d1(xy) = d2(x)y + xd3(y),

for all x, y ∈ A. (See [77] for a comprehensive motivation of this concept.) The following
question arises from the important role that isotopisms play as algebraic representations
of mutations in Genetics.

Problem 4.1. Characterize the subspace of ternary derivations of any given finite-
dimensional evolution algebra and establish the relationship with its autotopism group.

4.7. Classification of evolution algebras

In the previous subsections, the distribution into isomorphism classes of different
types of evolution algebras has been outlined. Let us indicate here some more results
concerning the classification of finite-dimensional evolution algebras.

In 2013, Casas, Ladra, Omirov and Rozikov distributed [29, Theorem 4.1] all the
two-dimensional evolution algebras over the complex field into six non-isomorphic
classes. Nevertheless, Cabrera, Siles and Velasco [18] realized that this classification
did not consider the evolution algebra with natural basis {e1, e2} verifying e2

1 = e2 and
e2

2 = e1. It was noticed in the classification of three-dimensional evolution algebras with
two-dimensional derived algebra and one-dimensional annihilator [18, Theorem 3.5].

In 2014, Murodov distributed [84, Theorem 1] into isomorphism classes the set of
two-dimensional evolution algebras over the real field. More recently, the classification
over a general field was independently achieved by Óscar J. Falcón, Raúl M. Falcón
and Juan Núñez [44], and by Maria Inez Cardoso, Daniel Gonçalves, Dolores Martı́n

arquero, Cándido Martı́n González and Siles [26]. In [44], it was also observed that
he distribution of evolution algebras into isotopism classes is uniquely related with
he mutation of alleles in non-Mendelian Genetics. In that reference, it was obtained
he distribution into four isotopism classes of all two-dimensional evolution algebras,
hatever the base field is.
In 2017, Cabrera, Siles and Velasco [18] classified into 116 distinct types the set of

hree-dimensional evolution algebras over any field of characteristic distinct from two
nd in which there are roots of orders two, three and seven. Their results agreed with
hose ones of Elduque and Labra [40] concerning the classification of indecomposable
ilpotent evolution algebras of dimension up to five over any algebraically closed fields of
haracteristic distinct from two. More recently, based on an alternative approach, Marı́a
ugenia Celorrio and Velasco [33, Theorem 11] classified the mentioned 116 types of
lgebras into 14 non-isomorphic types,

In 2018, the distribution of three-dimensional evolution algebras having one-
imensional annihilator was determined in [45, Theorem 4.7], where it was also
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established [45, Corollary 3.3] the distribution of three-dimensional evolution algebras
into isotopism classes, whatever the base field is. This last classification enables one to
describe the spectrum of genetic patterns of three distinct genotypes during a mitosis
process.

Also in 2018, Anvar N. Imomkulov [62] introduced an evolution operator for evolution
algebras. Both the set of fixed points and the Jacobian matrix of this operator were
studied for two-dimensional evolution algebras. In particular, it was established the
distribution into isomorphism classes of those two-dimensional evolution algebras having
this Jacobian matrix as structure matrix. The distribution of the three-dimensional case
was also dealt with by the same author [63], who proposed as further work the following
research problem.

Problem 4.2. Study possible approximations of finite-dimensional algebras by means
of evolution algebras.

A first approach of this problem was considered by Imomkulov himself, together
with Rozikov, who determined [66] in 2020 the relationship among two- and three-
dimensional Leibniz algebras and evolution algebras. Also in 2020, Imomkulov [65]
got a result about absolute nilpotent elements of evolution algebras corresponding to
approximation of finite dimensional algebras. Already in 2021, Cabrera et al. [16] have
provided four different constructions producing three-dimensional evolution algebras
from two-dimensional algebras.

5. Relationship to other topics

This section outlines the relationship among evolution algebras, Graph theory, Group
theory, Markov chains and Biology.

5.1. Graph theory

In his original manuscript, Tian [109] realized that every finite graph G = (V, E) may
be associated with an evolution algebra A(G) having the vertex set V = {e1, . . . , en} as
ts natural basis, and such that

ei ei =

∑
ek∈Γ (ei )

ek,

or every positive integer i ≤ n, where Γ (ei ) is the neighborhood of the vertex ei in
he graph G. In this way, isomorphic graphs give rise to isomorphic evolution algebras
109, Theorem 41]. Moreover, if

Lm(ei ) =

n∑
j=1

pikek,

here L is the evolution operator associated to A(G), then pik coincides with the
otal number of paths of length m between both vertices ei and e j in the graph G
109, Theorem 43].
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In order to deal with the reciprocal, Tian [109] introduced the concept of graphicable
algebra as an evolution algebra of natural basis V = {e1, . . . , en} such that

ei ei =

∑
ek∈Vi

ek,

for all positive integer i ≤ n, where Vi ⊆ V . Even if evolution algebras are not
raphicable in general, every graphicable algebra is uniquely associated to a graph such
hat Vi = Γ (ei ). In this way, two isomorphic graphicable algebras give rise to isomorphic
raphs [109, Theorem 42]. In particular, Tian introduced cycle algebras, path algebras

and complete algebras as graphicable algebras giving rise, respectively, to cycles, paths
and complete graphs. In a similar way, Núñez, Marı́a Luisa Rodrı́guez-Arévalo and Marı́a

rinidad Villar [86] dealt with complete tripartite and n-partite, star, friendship, wheel and
nark graphicable algebras. These authors also proved [86, Theorem 3.8] the existence of
raphicable subalgebras within a graphicable algebra. Further, Núñez, Marithania Silvero
nd Villar dealt [87] with the particular case of graphicable algebras for which ek ∈ Vi

f and only if ei ∈ Vk , and ei ̸∈ Vi , for every pair of positive integers i, k ≤ n such that
̸= k. They called S-graphicable algebras this type of algebras.

Based on both notions of evolution algebra arising from a graph and graphicable
lgebra, Tian remarked [109] that the ‘intrinsic and coherent relation of evolution
lgebras with graph theory allows to analyze graphs algebraically [...] and graph theory
ay be used as a tool to study non-associative algebras”. It is so that he asked whether
every statement or problem in graph theory can be translated into the language of
volution algebras”. He put particular interest in the possible relationship of evolution
lgebras with random graphs and networks, random walks on graphs, weighted graphs
nd directed graphs.

Furthermore, Tian also asked for those evolution algebras arising from finite graphs
hose associated Ihara–Selberg zeta function satisfies the Sunada’s analogue of Riemann
ypothesis [107].

In 2011, Rozikov and Tian [102] described an alternative for relating an evolution
lgebra to a given finite and simple graph by means of state spaces endowed with
ibbs measures. For connected graphs, they determined the hierarchical structure of

hese algebras, together with the dimension and number of one- and four-dimensional
volution subalgebras [102, Theorem 3.2]. Moreover, all the evolution algebras arising
rom the same finite and simple graph, but defined by different Gibbs measures, are
airwise isomorphic [102, Theorem 3.3]. The authors established as further open problem
he study of the hierarchical structure of evolution algebras associated to graphs that are
ither finite, but not connected; or countable and connected.

In 2015, Elduque and Labra [39] defined the directed graph attached to an n-
imensional evolution algebra of structure matrix (pik)i,k with respect to a given natural
asis as the graph of set of vertices V = {1, . . . , n} and set of arcs A = {(i, k) ∈

V × V : pik ̸= 0}. If each arc (i, k) ∈ A is labeled as pik , then one obtains the directed
eighted graph attached to E . If Ann(E) = {0}, then its directed graph is connected

f and only if E does not split into a direct sum of simple ideals [39, Proposition 2.8].
f the annihilator is not trivial, then this decomposition is not possible if and only if
ts directed graph is connected for every natural basis [39, Proposition 2.10] (see also
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[27, Proposition 5.4]). Further, E is nil if and only if its attached directed graph contains
no oriented cycles [39, Theorem 3.4]. These attached (weighted) directed graphs were
also used to distribute into isomorphism classes the set of four- and five-dimensional
nilpotent evolution algebras [40].

In 2020, Cadavid, Rodiño and Rodrı́guez [20] described the evolution algebra induced
by the random walk on a graph and studied its relationship with the evolution algebra
determined by the same graph according to Tian’s proposal [109]. Recall here that the
random walk on a graph of set of vertices V and adjacency matrix (ai j )i, j is a discrete
Markov chain with state space V such that the transition probability of moving from
state i to state j is

pi j =
ai j∑

k∈V aik
.

The mentioned authors described the evolution algebra induced by this random walk as
he evolution algebra of natural basis {e1, . . . , en} and structure matrix (pi j )i, j .

Then, they studied under which conditions one may ensure that this evolution algebra
s isomorphic to Tian’s evolution algebra associated to the graph under consideration.

ore recently, the same authors have proved [21, Theorem 2.2] that both algebras are
ndeed strongly isotopic. In addition, they have provided conditions [21, Theorem 2.3]
nder which these algebras are isomorphic or not.

Also in 2020, Manuel Ceballos, Núñez and Ángel Tenorio [32] described the directed
eighted pseudograph associated to an n-dimensional evolution algebra of structure
atrix (pik)i,k as the pseudograph resulting after adding a loop on each vertex i of the
lduque and Labra’s directed weighted graph attached to E , whenever pi i ̸= 0. This loop

s then labeled as pi i . The distribution into isomorphism classes of these pseudodigraphs
nabled them to establish a new classification of evolution algebras.

Furthermore, Rafael González and Núñez [53] translated into the algebraic language
ome basic concepts and results concerning the directed graphs associated to an evolution
lgebra. In particular, based on the adjacency of graphs, they introduced the notions of
djacency, walk, trail, circuit, path and cycle of an evolution algebra. In addition, strongly
nd weakly connected evolution algebras were introduced as the algebraic equivalences
f the same concepts in graph theory. It enabled the authors to introduce the notions
f distance, girth, circumference, eccentricity, center, radio, diameter and geodesic of
n evolution algebra, together with the concepts of Eulerian and Hamiltonian evolution
lgebras.

In 2021, Qaralleh and Mukhamedov [98] have introduced the concept of Volterra
volution algebra as an evolution algebra whose structural matrix is described by skew
ymmetric matrices. This type of algebras are not nilpotent. In particular, they have
roved [98, Theorem 6.5] that the directed weighted graphs associated to two Volterra
volution algebras are isomorphic if and only if the mentioned algebras are isomorphic.

.2. Group theory

Tian [109] associated any given group (G, ◦) having a finite set of generators S
ith the evolution algebra described over a base field K so that, for each g ∈ G, one
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g · g =

∑
e∈S

keg ◦ e, (1)

for some ke ∈ K. Particularly, Tian set out the following question.

Problem 5.1 ([109]). How can the properties of a group be translated to the correspond-
ing evolution algebra?

5.3. Markov chains

Tian himself [109] realized that every Markov chain is related to a Markov evolution
algebra whose structural constants coincide with the transition probabilities of the former
and whose basis constitutes the state space of the Markov process.

As such, generators of Markov evolution algebras represent states of stochastic
processes described by Markov chains, which may, therefore, be studied by means of the
theory of evolution algebras. In particular, Markov chains may be classified according
to the hierarchies of their corresponding evolution algebras. Tian proved that a Markov
chain is irreducible if and only if its related evolution algebra is simple [109, Theorem
18], and that a subset of state space of a Markov chain is probabilistic closed if and only if
it generates an evolution subalgebra [109, Theorem 17]. In addition, probabilistic periods
in Markov chains are uniquely related to periods of generators in evolution algebras
[109, Proposition 10].

Tian also introduced the possibility of dealing with continuous evolution algebras,
once structural constants are replaced by differential functions depending on a variable.
If the latter represents the time, then continuous evolution algebras are uniquely related to
continuous-time Markov chains [115]. Tian thought that the study of continuous evolution
algebras “will be very interesting because they have a kind of semi-Lie group structure”.

In 2011, as a generalization of Tian’s idea, Casas and Rozikov [30] realized that every
arkov chain is associated to a chain of n-dimensional evolution algebras {A[s,t]

: 0 ≤

≤ t} depending on two time parameters s and t . Their structure matrices M[s,t] are all
f them stochastic and satisfy that

M[s,t]
= M[s,τ ]M[τ,t]

or all s < τ < t . This chain represents a continuous time dynamical system that
s an evolution algebra in each fixed time. If all the matrices of the chain coincide,
hen they constitute the same evolution algebra that Tian associated to a Markov chain.
urthermore, if both time parameters s and t are reduced to only one of them, then

he chain is called time-homogeneous and is associated to a time-homogeneous Markov
hain. The authors also dealt with chains of evolution algebras for which the stochastic
ondition is removed.

In 2013, Rozikov and Mudorov [101] constructed 25 distinct examples of chains
f two-dimensional evolution algebras, for which they studied their baricity, nilpotency
nd idempotency. (Some new examples have been recently described by Ladra and

urodov [71].) In 2020, Imomkulov and Velasco [67] got a description depending



M. Ceballos, R.M. Falcón, J. Núñez-Valdés et al. / Expo. Math. 40 (2022) 819–843 837

t
t
a
c
a
c
a

M
o
f

5

b
(
m
(
b
a
g
o
c
g

a
p
s
d
w
s

o
o
p
i

on rank of chains of three-dimensional evolution algebras. And then, for these chains,
Imomkulov [64] studied the behavior of both the baric property and the set of absolute
nilpotent elements, and also the time-depending dynamics of the set of idempotent
elements.

The general case was already considered in 2015, when Omirov, Rozikov and Kaisar
Tulenbayev [88] dealt with real chains of n-dimensional evolution algebras corresponding
o a permutation of n numbers and showed that one such a chain is trivial if and only if
he permutation has no fixed points [88, Proposition 1]. (The study of evolution algebras
rising from permutations was introduced by Narkuziev [85], who described a nilpotency
ondition on this type of algebras.) Moreover, since every trivial chain of evolution
lgebras is a chain of nilpotent evolution algebras [88, Proposition 2], they constructed
hains of three-dimensional evolution algebras. They also dealt with the construction of
rbitrary-dimensional symmetric chains of evolution algebras.

In 2017, Ladra and Rozikov [73,74] described non-homogeneous continuous time
arkov chains. More recently, Irene Paniello [94] has delved into the algebraic structure

f Markov evolution algebras for both the discrete-time and the continuous-time arising
rom standard stochastic semigroups.

.4. Biology

Since the original manuscripts of Tian and Vojtechovsky, evolution algebras have
een implemented in Biology to represent different aspects of non-Mendelian inheritance
particularly, uniparental inheritance) in an algebraic way. Thus, Tian himself [110]
ade use of these algebras to analyze how the homoplasmy of a cell population

represented by persistent generators) can derive from an heteroplasmy one (represented
y transient generators). This is useful, for instance, to study mitochondrial disorders
nd mutations in tissues of patients. He also implemented evolution algebras to describe
enetically dynamical patterns that provide information about the asexual reproduction
f Phytophthora infectants causing the late blight of tomatoes and potatoes. An algebraic
oncept as nilpotency represents the extinction of original genetic types after certain
enerations.

Continuous-time dynamical systems of mosquito populations were studied by Rozikov
nd Velasco [103]. Mosquito populations were already been dealt with from an algebraic
oint of view in 2011 by Junliang Lu and Jia Li [75], who proposed a discrete time
tructured model of such a population. On their own, Rozikov and Velasco considered a
iscrete-time dynamical system described by an evolution algebra with two fixed points,
hich become saddle points under some conditions on the parameters of the system. Its

tructure matrix is equal to the Jacobian of the QSO at a fixed point.
Another aspect that Tian [109] realized was the possible use of evolution algebras

n coalescent theory [113]. That is, on genetic evolution reversely over time. The study
f backwards evolution of Mendelian genetic systems by means of coalgebras had been
reviously introduced in 2004 by Tian and Bai-Lian Li [112]. In 2019, Paniello [92]
ntroduced the concept of evolution coalgebra in order to model backwards evolution of

Non-Mendelian genetic systems. She established the connection between such coalgebras
and evolution algebras, by focusing in particular on the cases of genetic realizations. An
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illustrative example of this approach was given by Paniello herself [93] in case of dealing
with chicken populations.

In 2020, Miguel Bustamante, Mellon and Velasco [13,14] described necessary and
ufficient conditions for a given algebra to be an evolution algebra. They proved that
his problem is equivalent to the simultaneous diagonalization via congruence of a given
et of matrices. Based on this fact, they realized that arbitrarily small perturbations
f classical genetic algebras representing Mendelian and auto-tetraploid inheritance
which are not evolution algebras) may give rise to evolution algebras. The algebraic
epresentations of sexual and asexual inheritance by means of genetic and evolution
lgebras seem, therefore, to be closer than previously thought. A further study of baric
nd evolution algebras was established by the authors as a first stage to better understand
his relationship. In any case, notice that Mukhamedov and Qaralleh already set out the
ollowing question in 2014.

roblem 5.2 ([82]). Is there a transformation of a given genetic algebra to some evolution
lgebra?

They gave an affirmative answer in case of dealing with two-dimensional genetic
lgebras (see [82, Theorem 4.1]). The resulting transformation enabled them to provide
ecessary conditions on the structure matrix of these genetic algebras for ensuring the
xistence of non-trivial derivations (see [82, Theorem 5.1]).

. Conclusion

This paper has dealt with the past, origin, development and possible further work of the
heory of evolution algebras introduced by Tian [108] in 2004, with particular emphasis
n the relationship that this theory has with a wide amount of distinct branches, not only
n Mathematics, but with other areas of research. As such, the paper aims to be a starting
oint for all those researchers interested in this topic.
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